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By R. R. Mills, Jr., A. L. Kistler, V. O'Brien, and S. Corrsin 

In the approxFmately isotropic velocity and temperature fluctuation 
fields behind a hot grfd, measurements were made of fluctuation levels 
and of various double and triple correlation functions. 

The double and triple correlation coefficient functions are of 
roughly the ssme spatial extent for the vector and scalar fields. As 
anticipated from theoretical considerations, the temperature fluctua- 
tions die out more slowly than does the turbulence. 

INTRODUCTION 

The simplest turbulent flow is that for which the statistical prop- 
erties of tie field are invariant to rotation or reflection of the Car- 
tesian coordinate system. This notion, isotropic turbulence, was intro- 
duced by Taylor in 1935 (ref. 1) and has been fruitful in permitting 
relatively detailed snalyticsl studies (ref. 2). 

An approximation to isotropic turbulence turns up in t'ne high Reyn- 
olds number flow far behind a plane '$orous" obstacle spanning a uniform 
mean flow in a duct. The customary obstacle is a square mesh biplane 
grid of round rods. 

Although the turbulence found in natural and technological flows is 
ordinarily far from isotropic, many features of diverse turbulent flows, 
especially the spatially local features, seem to be moderately universal 
(ref. 3). 

A comparison between the correlation equations for concomitant (in- 
compressible) isotropic velocity and temperature fields shows differences 
attributable to the fact that velocity is a vector, while temperature is 
a scalar (refs. 4 to 6). (As pointed out in refs. 4 and 5, the work 
applies equally well to isotropic turbulent mixing between two different 
constituents , provided the molecular mass transfer coefficient is 
nearly.constsnt over the concentration range encountered.) The relative 

. 
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decay rates were estimated under strong simplifying assumptions, and the 
relative ~microscales" were deduced in terms of the Prandtl number of 
the fluid. Since these theoreticsl predictions are essentially conjec- 
ture, it is necessary to determine some facts through measurement. 

A comparison of the corresponding statistical properties of these 
two fields has not only intrinsic interest; it may slso contribute even- 
tuUy to an understanding of the difference between momentum and heat 
transport rates in turbulent shear flows with mean temperature gradients. 

A "hot grid" with thermal mesh equal to momentum mesh was selected 
with the expectation that approximate equality of integral scales would 
be obtained. The analysis of reference 4 suggests tnat the flow with 
equal integrrtl scales for velocity and temperature fields may not be the 
simplest case analytically but is relatively simple for experimental 
reslization. 

This work conducted at The Johns Hopkins University has been spon- 
sored and supported financially by the National Advisory Committee for 
Aeronautics. Acknowledgment is made to Dr. L. S. G. Kovasznay, Mr. L. 
T. Miller, and Mr. J. L. Lumley for their advice and Mr. S. Ehaduri for 
preparing the figures. 
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SYMBOLS 

.&) 

i 

%2 

specific heat at constant pressure 
. 

one-aimensional power spectrum of &fluctuations 

one-dimensionti power spectrum of u-fluctuations 

output voltage of hot wire due to turbulent fluctuations; 
subscripts 1 and 2 distinguish between different wires 

longitudinal double velocity correlation coefffcient, 

~2Ei$ 

lateral double velocity correlation coefficient, 
u(x,y,z)u(x,y+r,z) 

u’ 2(x) 

wire current 

output of cubing circuit, microamps 
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. 
r’ IS 

K 

k(r) 

LfJe 

M 

Pr 

p(r) 

triple temperature correlation, 

Peclet number, u'h$~ 

Prandtl number, v/y 

temperature-velocity triple correlation, 

u(x,y,z) e(x,y,z) e(x+r,y,z j- u1Q.02 
U'(X) et(x) et(x+r) = %e;ek 

Re 

r 

'e 

Reynolds nmber, Agur/v 

space intervel 

-3 -2 3/2 skewness of voltage, e /(e ) 

% skewness of voltage derivative, 

se 

%l 

S- U 

sau(d 

skewness of voltage difference, (el - 

skewness of velocity, T/(u ) 2 312 

skewness of velocity derivative, @~w3/[(au/a,)z13~2 

skewness of velocity difference, (ul - u2) 3/bu1 - u2Fj312 

skewness of temperature fluctuation, 7/(7,"/" 

output of squsring circuit, microemps 

thermal conductivity coefficient 

longitudinti triple velocity correlation, 

u2(x,y,z)u(x+r,y,z) u&2 
b1 (x,1" u' (x+r) = - 

integral scales of f and m, respectively 

grid mesh size for momentum and heat, M = 1 in. 

temperature correlation coefficient, B(x,y,z)8(x+r,y,z) EL82 
8' (x> 8’ (x+r) =e;ek 
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mean fluid temperature 

time 

mean flow velocity 

turbulent velocity fluctuations in x- and y-directions, 
respectively 

u(x+r) 

VI = 43% v2 = v(y+d 

Csrtesim space coordinates, x dined with mean flow 

therm&. diffusivity coefficient, K/pep 

length parameters in universal e uilibrium theory for velocity 
and temperature, respectively 4 q is the "Kolmogoroff micro- 
scale" ) 

temperature fluctuation 1. 

el = e(x), e2 = e(x+r) 

wave numbers at lower and upper bounds of inertial subrange, 
respectively, corresponding to velocity spectrum except 
when subscript 8 is used 

wave number in x-direction 
-. 

Ag,hfJG dissipation scsles and lateral and longitudinal velocity and 
temperature fluctuations, respectively 

P viscosity coefficient 

v kinematic viscosity coefficient, p/p 

5 space interval in x-direction, 3 Ax 

P density 

Subscripts: 

max maximum 

8 wave number corresponding to temperature spectrum 



NACA TN 4288 
y' 

5 

Superscript: 

indicates root-mean-square values, e.g., ur = 
i- 

7 

EXFERIMFXFALEQUIXWENT 

Approximately isotropic turbulence was produced at some distance 
behind a biplane square mesh grid of l/4-inch-round metal rods spaced 1 
inch at the centers. The grid was positioned in the wind tunnel as 
shown in figure 1. The signals generated by the hot-wires in the wind 
tunnel were fed into the circuit outlined in figure 2. In order to 
measure the various skewness factors and triple correlation functions 
presented later in this report, it was necessary to incorporate the 
power and operational smplifier circuit (fFg. 3) to boost the signal 
levels to the proper input level of the squaring and cubing circuits 
shown in figures 4 and 5. (Th e auxiliary squaring and cubing circuit 
was developed by Mr. L. T. Miller of the Aeronautics Department, The 
Johns Hopkins University.) 

c 
A typical set of calibration curves for this auxilisry squaring and 

cubing circuit is shown in figure 6. The response of the auxiliary sm- 
plifiers was flat to approximately 10 kilocycles when used as ordinary 
power boosters; and when used as differentiating operational amplifiers, 
the response was linear with frequency to approximately 6 kilocycles 
(m3. 7). 

The wind tunnel wslls were adjusted to provide uniform mean flow 
over approximately 90 percent of the cross. section. This configuration 
produces a turbulence which is not quite isotropic: v' = 0.9 u' at 
x/M = 100. (This i s consistent with all previous measurements in which 
the authors have participated (see, e.g., ref. 7). 

The grid was heated with 220-volt, J-phase alternating current in 
order to generate approximately isotropic temperature fluctuations In 
this flow field. No 120-cycle-per-second periodic temperature component 
was detectable with this arrangement. To produce a uniform mean temper- 
ature field downstream of the grid, it was necessary to have local con- 
trol over the heating current supplied to grid rods. Adjustable resis- 
tors were added to the grid heating current supply lines to achieve the 
desired mean tqerature distribution (fig. 8). 

The present arrangements generated satisfactorily homogeneous tur- 
bulence and temperature fields (fig. 9). 

Turbulence and temperature root-mean-square fluctuation measurements 
were made with the hot-wire snemometry equipment described in reference 
8. The experimental procedures for simultaneous velocity and temperature 
fluctuations are given in reference 9. 
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All the measurements were made at a mean speed of 14 feet per sec- 
ond and a mean temperature rise (across the grid) of about 5' C. The 
resulting temperature fluctuations were inconveniently small, but this 
ensured negligible influence of density variations upon the fully devel- 
oped turbulent velocity field, as attested by both turbulence level and 
velocity correlation measurements. 

- - Y 

Because of the extremely small temperature fluctuations, it was nec- 
essary to use unususJly high resistance hot-wires, 0.00005-inch plati- 
num of about 75- to 150-ohm resistance and about 0.1 inch long. No 
length corrections were applied to the data. The high resistance neces- 
sitated correction for heating current fluctuations when the system was 
operated as sn anemometer. The uncompensated time constant of these 
wires was about 0.1 millisecond. In this particular flow field, the 
wire current giving equal root-mean-square si.gnsl contributions from ve- 
locity snd from the temperature fluctuations was 5.5 milliamperes. The 
sensitivity to temperature was approximately. linear with current, and. 
the sensitivity to velocity was proportional to the current cubed for- 
currents less than roughly 0.7 milliampere.. - 

. 

The decsys of the temperature and velocity fluctuations were meas- 
ured with a single hot-wire used at various operating conditions so that 
the separate decay functions could be calcfiated (ref. 9). The correla- 
tion was zero with the accuracy of the data. 

Two-point double correlations were measured with two wires mounted 
on a traversing device that located the wires with respect to each other 
within 0.005 inch. One wire was held stationary and the other was moved 
downstream, and the line joining the wires made an angle of 5O with the 
mean flow velocity. This was done in order to avoid interference effects. 
When the wires were at their closest position, they were lateray sepa- 
rated rather than one behind the other. Appropriate corrections have 
been applied to the correlation data by assuming the isotropic relation 
for the correlation tensor. 

- 

Since preliminsry measurements showed that the velocity double cor- 
relations were unaffected by the presence of temperature fluctuations, 
the velocity measurements reported here were done with the heat off for 
convenience. 

Temperature double correlations were measured using the hot-wires 
as resistance thermometers (i& 1 ma). The correlations were corrected 
kor noise by assuming the noise uncorrelated with the signal. 
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For convenience, the u' spectrum was measured without heating 
after it had been determined that the u' levels and correlations were 
not appreciably changed by the heating. 

The temperature spectrum was measured with "mixed" sensitivity, 
that is, wire temperature set for the same order of response to velocity 
and temperature. This was done because, under pure-resistance-thermometer 
operation, the signal was inconveniently low at the higher frequencies. 
Of course, increasing the wire temperature does not increase the rate of 
gathering of information on the larger voltsge signal. 

With mixed sensitivity the hot-wire responds to both velocity and 
temperature spectra, which must be separated. Simple superposition of 
the two energy spectra follows from the assum@on that sJl harmonics 
of the two spectra are uncorrelated. Since 8u a 0 in this field, such 
an assumption seems reasonable. Then the temperature spectrum is ob- 
tained by subtracting the (unheated grid) velocity spectrum from the 
mixed spectrum. 

The skewness of the velocity spatial derivative was determined by 
differentiating the velocity signal with respect to time and measuring 
the mean cube and mean square of the resulting signal. The proportion- 
slity of instantaneous space and time derivatives is close for this flow 
(refs. 10 and 11). Since the noise was uncorrelatedwith the derivative 
signsl, the noise power could be subtracted directly from the mean-square 
signal. The noise skewness was measured and found equsl to zero so that 
no correction was made to the cubed signsl. 

The triple velocity correlation measured in this experiment was 
k(r) since k(r) requires hot-wires sensitive only to u velocity. The 
wire locations sre, of course, identicel to those required to measure 
pbd - 

To measure ul$2(t) the signals from two hot-wires, sepsrated a 
distance 5 = r, were subtracted and cubed. The resulting signsl,when 
assuming identical hot-wires, is proportional to 

3 Ul - u; + 3u114 - 3& 

If the sum of the two signals is slso cubed, the result is 

Uf + U; + 3U14 + 3& 

For isotropic turbulence, u$2(5) is an odd function of 5 so that 



8 NACA T'N 4288 a 

Also 

33 Ly=l+=o 

Therefore, if isotropy is assumed, the difference signal is just 6u&, 
the desired quantity, and the sum is identically zero. When the sum was 
measured for the tires in their closest position, however, it was found 
that the mean cube of the signal was eight times the mean cube of a 
single-wire voltsge. -This anomalous behavior was traced to the nonltisr $ 
distortion of the signsl by the hot-wire itself. The analysis of this K 
situation is given in the appendix. 

When the difference of the two voltages is used, the nonlinear hot- 
wire effect on the mean cube is considerably smsJJ.er, a phenomenon sim- .-- -.- = 
ilar to the canceling of second-harmonic distortion by a push-pull sm- - 

j-..-. 
plifier. Therefore, all measurements of the correlation $12 reported 
here sre measured by using the difference signal only. 

-my The function E&(r), defined as (ul - u2) 
5 

-- $ul - u2]j3’2 for 
r, was obtained by direct measurement of the two factors. At r= 0, 

bo;h numerator snd denominator go to zero but in such a way that their s - 
ratio is equal to the skewness of the derivative (ref. 2). Therefore, 
E&(o) = sa was obtained by direct differentiation of the velocity - 

Sigllal. .- 
.- 

The cube of the difference signal from two wires adjusted to be 
equ&ly sensitive to velocity and temperature fluctuations is given by 

33 + S&l - 6~16-~-62 - 33 - 3U26$ + 6~263-62 + 

6elulu2 
2 - - 362ul - 362< + 662~1~2 

With isotropy, sJ-l the terms containing the variables at only one point 
snd the velocity to an odd power are zero. .,.-There are also the following 
isotropic relations: 

. 
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u& = - u& 
-- 
<e, = ge2 

-- 
<e2 = I+, 

ul"2el=ulu2e2 

uzele2 = - uzele2 

-- 
efe2 = e,eg 

The correlation uleg or uz E? is identically zero for an iso- 
tropic, incompressible field just as the pressure velocity correlation 
is zero (ref. 10). The correlation ulu2EJl is equal to ulu2EJ2 since 
this is one component of a second-order isotropic tensor, solenoidal in 
one index, just as f and g are even in tke pure velocity case. 
Therefore, continuity gives a relation between the two components, and 
this relation preserves the symmetry property. The components anslogous 
to 43 b k3. j Q-p14 are obviously symmetric, and, therefore, 6Lul% is 

also symmetric in 6. 

With the assumption of isotropy in the field, therefore, the aver- 
age of the difference voltage cubed is finslly reduced to 

3- ("1 - e2) = 6gul + i2ulele2 (2) 

To determine the triple temperature correlation 0-l 2(5), 26 the two 
wires must be sensitive only to 8 temperature fluctuations. In this 
measurement, both tne sum and difference signals of the two wires must 
be cubed. By assuming identicsl hot-wires, the cube of the sum minus 
the cube of the difference signal is proportional to 

(3) 

which is the required correlation. 

The preceding anslysis assumes identical hot-wires. In practice, 
this is an extremely difficult condition to meet. It was found much 
easier to determine the sensitivities of the two wires by actual. cdi- 
bration and to modify the above analysis to account for this difference. 

. The modification is straightforward in the determination of ufu2 and 
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e&; however, in the measurement of ul%<2 the calculations require b 
that each wire be eqUy sensitive to velocity and temperature fluctua- 
tions. This was impossible to accomplish in general, and the measure- 
ments of this function contain contributions from correlations neglected 
by symmetry conditions in the preceding analysis. However, rough esti- 
mates of the order of magnitudes of these terms were made, and appro- 

_ 

priate corrections have been made. 

EixPER- RESULTS 

The velocity snd temperature fluctuation decay curves are plotted 
in figures 10 and 11, respectively. A typic&L pair of runs is given for 
each to indicate the repeatability of the data as well as the eqdity 
of hot- and cold-grid flows. The inverse squares are plotted in figures 
12 snd13. 

The time spectra of 8 and u at x/M = 17.0 were determined as 
described in the previous section and are shown in figure 14. These may . 
be considered fair approximations to the one-dimensional longitudinal 
space spectra, except for the lowest wave number range (ref. XL). With- 
in the experimental precision there is no significant difference. The B 
circuit noise has been subtracted out for doth sets of data. 

The skewness of the velocity derivative, defined by 

is shown in figure 15 as a function of x/M. For isotropic turbulence, 

%l = k"'(O)$. The curve indicates that it is a slowly increasing func- 
tion of x with values in the vicinity of 0.4. .The nonconstancy may 
indicate that the Reynolds number of the turbulence was not sufficiently 
high for S; to be determined solely by eddies in the Kolmogoroff in- 
ertial subrange (ref. 3); there were contributions from the larger eddies 
and from those influenced by viscosity. Other comparable data, including 
some measurements by Ratchelor and Townsend at the same Reynolds number 
behind a grid of lower solidity (ref. 12) and one measurement by Stewart 
(ref. 13), are included for comparison. 

The temperature field was produced by the turbulence-producing grid 
itself. It was hoped that this method of introducing the temperature 
fluctuations would not cause a "spotty" condition to be generated. 

* 

L 
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i However, figure 16 shows Se - as a function of x/M. Al- 
though S6 is small (max. value, E 0.08), this evidence of an initial 
"pulse" chszacter is quite measurable. 

The longitudinal velocity correlations are shown for various values 
of x/M in figure 17. The definition of this correlation is 

f(r) = J$$ where the subscript 1 denotes spatial location x, Y., 2 and 

subscript 2 denotes x+r,y,z. Primes on ul and u2 mean root-mesn- 
square value. It is assumed that f(r) is essentially equal to the iso- 
tropic correlations of von K&m& and Howarth (ref. 10). If the turbu- 
lence were similar in structure at sll decsy times, a plot of this f(r) 
against a nondimensional scale proportional to a local characteristic 
length would collapse sll curves into one. It is well established that 
such is not the case in actual turbulence. For this plot the length 
selected was the "dissipation scale" or "Taylor microscsle," defined by 

The A's used here were obtained by fitting parabolas to the vertices. 
Independent detemination was made via the decay equation valid for iso- 
tropic turbulence. This equation is also due to Taylor: 

du2 - = -lov 
dt 

and with the use of Taylor's hypothesis 
space and time on the average: 

3 

for the interchangeability of 

2 v u -x)-- 
TT hg. 

Therefore, h, can be deduced from the decay curve for u2 as a function 
of x. The h, comparison is given in figure 18, along with one value 
obtained from the second moment of the measured power spectrum (ref. 2): 
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Within the experimentsl scatter, the use of r/Af collapses the 
correlations in the region near the origin but not at the tails, consis- 

P 

tent with earlier experiment&. results. The systematic decrease of the- 
correlation with decay time at a fixed r/hf shows the well known fact 
that the turbulence is not accurately similar; still, it is roughly so. 

The temperature double correlations :- _. 

49 
8162 

=r 
ele2 

were plotted (fig. 19) in the same way as the velocity correlations but 
against r/Ae, where this thermal "microscs&" is given by (ref. 4) 

1 1 a2m -=- - 

A28 ( ) 2 ar2 po 
(7) 

That the temperature fluctuation field was reasonably isotropic is 
evidenced by the approximate equslity of the longitudinal and lateral 
temperature double correlations (fig. 19(b)). 

The isotropic temperature decay equation gives an independent esti- 
mate of A6 (ref. 4): 

. 

w 

-- 

2 ae = -12 - - l-7 ax 6 A; (8) 

The Ae scales are compared in figure 18 along with those (ref. 5) com- 
puted from the temperature spectrum by an equation like (6). 

Figure 20 shows a typicsl contrast between f(r) and m(r) at the 
same station. Although .A6 = h,, which corresponds to rough equality 
of vertex curvatures, m(r) runs higher immediately thereafter, which in- 
dicates that 

miV(o) ' fiV(0) 

The experimental curves for the triple.velocity 
shown in figure 21. 
x/M and r 

The values of k(r) were always 
vslues covered. AccordingtoIisotropic 

(9) 
correlations are 
negative f&the- 
turbulence theory, 

the triple correlation is zero at the origin, rises with an initial 
cubic! variation, and is zero at r = 0~: The signsl fluctuation made it 

Whether k(r) changes impractical to measure at large r where k = 0. 
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sign or goes to zero with a negative power greater than -4 (ref. 2) can- 
not be determined from these data. 

Figure 22 shows mixed temperature-velocity correlation coefficient 
at two of the x/M values where the triple velocity correlations were 
measured. As measured, 

p(r) = 
u1?Le2 
U;eiek 

(10) 

These data are somewhat more scattered than those of- k(r). When a cor- 
relation function was measured several times, there some-times occurred 
systematic differences attributed partly to the inevitable difference 
between any two hot-wires. Furthermore, individusl wire properties 
change as the wire is used, mainly because of the accumulation of dirt 
from the airstream. 

As shown previously, under the assmption of isotropy it is possible 
to get p(r) without knowing anything except k(r) if the wires are 
identical and have their velocity and temperature sensitivities equal.. 
In practice, however, if the inevitably nonidentical wires are operated 
so that they have the same sensitivity to velocity, their temperature 
sensitivities will be different. This condition necessitates measurement 
of other correlations (such as <e,) in order to obtain p(r). Esti- 
mates were made of t?ese corrections to p(r) and were negligible for 

the three stations presented. (The correlation e2 lG2 was available from 
a separate measurement.) 

The temperature-velocity correlation coefficients have a shape sim- 
ilm to that of the velocity correlations and are of the same order of 
magnitude. They were negative for sJLl x/M and r studied. 

Figures 21 and 22 show the triple correlation behavior as a func- 
tion of decsy time. These curves are plotted against an abscissa scale 
selected to collapse the curves in the neighborhood of the origin. Anal- 
ysis, if the fields are considered as isotropic, shows that the velocity 
correlation starts in the weILL known way: 
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and that 
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(12) 

Therefore, since Sti is roughly constant, k(r) plotted against r/hf 
should be universsl near the origin. Whether p(r) should be a universal 

function of r(hfh$-1/3 for r + 0 is determined by whether 

is roughly a constant as is the skewness factor of 

au/&x. The plots indicate that - increased more rapidly 

with decay time than Sh. was not measured di- 

rectly because of the loss of the signal in the tube noise. 

It appears from figure 23 that pmax increased with increasing 
x/M for the Reynolds and Peclet numbers of this experiment. The peak 
values of k(r) also increase in absolute value for increasing x/M in 
agreement with the result of Stewart (ref. 13). Near the origin they 
fsU into one curve, a necessary consequence of the relative constancy 
of SC. This is evidenced in figure 21(a) where equation (IL) has been 
computed and plotted. 

Plotted in this fashion the tails of neither p nor k are uni- 
versal functions, which again shows that the fields do not remain similar 
at different decay times. 

Figure 24 shows the function 

at several x/M. 'Ilhis function attains its maximum at r = 0 where its 
value is SG, the skewness factor of the velocity derivative (ref. 2). 
It fslls off r.apidly to about 0.2 and-then gradudly decreases, presm- 
ably to zero. Its behavior, at all x/M covered, is the same. The 
fact that this function is not a constant is another indication that the 
Reynolds number of this turbulence was not sufficiently high for a dom- 
inant inertial subrange. These measurements agree very well with those 
of Stewart (ref. 13). 
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In figure 25 n(r) is shown as a function of r for the three sta- 
tions examined. Although the scatter in the data is greater in these 
results than in the other triple correlations presented, the general 
trend of this correlation is bdicated clearly. 
n(0) 5 Se, 

The required limit, 
is substantiated within the accuracy of these experiments. 

Figure 26 shows the measured values of g(r). Included for compar- 
ison is the function g(r) conTputed from the well known isotropic rela- 
tion (ref. 15) 

g(r) = & & r2f(r) 
c 1 

The disagreement shown is probably partly due to the inaccuracy asso- 
ciated with any graphical differentiation process, partly because the 
scale characterizing the turbulence changes for r >O in the f(r) 
curve, and, finally, because the turbulence is not precisely isotropic. 

. ANALYSIS 

The theories of isotropic turbulence and of isotropic scalar fluc- 
tuations in isotropic turbulence are still unsolved; in fact, they have 
not even been formulated in a determinate way without recourse to ad hoc 
postulates. Nevertheless, a number of consequences of isotropy have 
been inferred, including some particulsx (and relatively simple) forms 
of the averaged differential equations. Several of these consequences 
have been invoked in the preceding section. 

Two-point correlation equations are of special interest here. For 
isotropic fields decaying in time, there are for the vector and scalar 
fields, respectively (refs. 4 and 14): 

and 

-$ (eZm, - 2e2(u2) --‘/“(g+ zf) - 2q$+gj) 

(14) 

(15) 

6 ince 

k(r) = -2h(r) 

h(r) = - $ k(r) 
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Sufficient data were tsken to permit co_mputation of every term in 
these equations.- Since the triple correlations were the least certain 
experimental results, these measured functions were compared with those 
obtained from the-double correlations by equations (14) snd (15). 

P 

Figure 27(b) shows a typical comparison for the velocity field. 
For small r/hf the agreement is somewhat less than that of Stewart's 
data (ref. 13), which sze plotted in figure 27(a), but not significantly 

. Figure 22(b) gives the comparison for the mixed triple correlation 
2 station x/M = 32.0. 

The small disagreement is presumably attributable to either lack 
of isotropy or inaccuracy in the measurement of triple correlations. 
Since the small structure should be reasonably isotropic even if the 
large structure is not, the latter reason seems more likely. 

If the correlations appearing in the above equations are expanded 
in a power series around 1: = 0 and the cqefficients of the r" terms 
are kept, the so-c&Led "decay equationsW result: 

ST 
2 7 du =: -2()v - 

dt 
G 

(16) I 

d82 -2 -=-12-r-- 
dt 

4 
(17) 

The actual experiments are done in steady state behind a grid with 
the various averaged quantities depending upon x instead of t. Taylor 
has pointed out, in effect, that, if.these-vary sufficiently slowly with 
x, equation (16) can be applied to the grid flow with the substitution 
x/c t. The s& holds for equation (17), so that 

- - 

- 
7 

du2= -20 v U2 -- 
ax Ghf2 

2 de 2 
-= -12 y e -- 
dx i7 h; 

(18) 

These two equations permit calculations of G(x) and he(x) from 
the experimental data on u'(x) and e'(x), as mentioned in the previous 
section. The faired results are included in figure 18. 
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Also plotted in figure 18 are the values of h obtained graphi- 
csUy from the double correlation curves according to 

In” (0) 
$=- 2 

f"(0) 

$-- 2 

aud those calculated frcm the power spectra. 

(a 

(21) 

Reference 1 shows that for two special "kinds" of isotropic fields 
the ratio he/hf has the ssme simple value: 

b> 

. 
where Pr is the Prandtl number v/y. The two kinds of isotropic fields 
are: 

(1) Reynolds and Peclet numbers are so smsll that the convective 
effects are negligible for both heat and momentum. Therefore, this is 
not really turbulence in the ordinary sense. 

(2) Reynolds and Pecle'c numbers are both very large, and each field 
is assumed to have completely "self-preserving" correlation function dur- 
ing decay. In this model propmsed by von K&m& (ref. 15), the dissipa- 
tion and conduction terms of the two correlation equations are neglected, 
but decay is included indirectly by substitution of the decay equations 
into the terms of the correlation equation. 

Equation (22) can also be deduced by an approach somewhat different 
from the previous: 

(3) The Reynolds and Peclet numbers are assumed to be s high that 
the inertial subranges (with Eu(xx) and Ee(?cx) both -xl -593) are suf- 
ficiently extensive to permit the approximations 

= x-5’3 
E,(x,) X x0 c x < x X C 

= 0 elsewhere 
(23) 
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The cutoff 
microscale: 

xo,e< se %,e 
elsewhere 

(24) 
b 

wave number xc is just the inverse of Kolmogoroff's 

25 
xc = T (25) 

Fi 
and xc e is the anslogous thermal quantity (ref. 5): 

w. tP 
> 

2a 
%,e = - qe 

(26) 

In reference 5 it is shown that 

The microscsles 
spectrum as 

xc,B = (pr)3/4 x C 
(27) 

. 

can be obtained from the second moment of the power 

Substituting equations (23) to (27) into (6) and (28) and neglecting 
2/3 

xO relative to x 2/3 0 213 result in C md %o,e relative to xc '8 9 

$ w xo 2'3 1 
1; - ( ) xo,e 75 

(28) 

(29) 

If consideration is now restricted to fields in which the themsJ. large 
eddy structure is roughly equal to the velocity large eddy structure 
(as in these experiments),xo =x0 eJ which again results in equation 
(221 l 

9 
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In fact, none of the three sets of assumptions leading to equation 
(22) is directly applicable to these experiments. The Reynolds and 
Peclet nlmibers are not low enough for case (1) and not high enough for 
the other two cases. Furthermore, It was shown that the correlation 
functions of velocity do not remain completely sFmilar during decay. 
The important conjecture to be made is that a result encountered under 
such divergent sets of assumptions may have approximate validity in a 
wide range of situations, perhaps including the actual one. 

iii d 

Bytaking Pr= 0.72 for air, equation (22) gives 

L, 2 
hf l 

(30) 

which is in reasonable agreement with the downstream values of he/X, 
computed from the decay curves but is higher than the values computed 
from the correlations. The data indicate a trend toward satisfaction 
of this relation for large decay times. The only other measurement of 
this ratio was on the axis of a heated round turbulent jet (ref. S), 
where the value was 0.95. 

The solid he/hf curve in figure18 is justaparticularwayof 
displaying the decay data. Two other ways are also instructive. Figure 
28 shows the variation in Reynolds and Peclet nabers: 

with h taken from the decay data. The apparent constancy of Pe is 
evident. 

Figure 29 shows the relative decay rates of temperature and veloc- 
ity fluctuations. For small x/M, these fluctuations die out at about 
the sane rate, but, for larger x/M, 8' dies out at a decidedly lower 
rate than does u'. For fully isotropic-fields the ratio of equation 
(19) to equation (18) gives 

de' 
7 

-=m& du' 
T 

(32) 
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and, if equation (22) holds, I 

(33) 

which is very close to the measured results--at large x/M. Notice that 
equation (33) is independent of Pr. 

No attempt has been made to compare the individual decay rates of 
6' and Uf with the theoretical predictions that c&z1 be obtained by a $ 
variety of postulates. i% z - 

The integral scales are defined by 

and 

=f 

Le 

s 00 = 
0 

s OD = 
0 

m(r) 

These are shown in figure 30. Reference 4.shows that, with self- 
preserving correlations, if the scales are equal at any instant and also 
at the initial time, they will remain equsl. The small discrepancy here 
is doubtless a result of the fact that there is certsinly no complete. 
similsrity in either field. Another consequence of a supposed similar- 
ity in both fields is that 

andthat 

h Re 
Lf 

(35) 

Figure 31 shows good agreement with both relations for large decay times. 

Figure 23 shows the value of kmsx as a function of decay time, 
contrasted with the results of Stewart (reP. 12). It is interesting to 
speculate on the history of kmax for even greater decay times. A mono- 
tonic increase in Gax (toward unity) would not be in contradiction to 
the usual approximations for very large decay time, that is, the so- 
called "fir& period" results, because the-coefficient of the k term of 
the correlation equation is the factor which certainly becomes negligible 
as Re+ 0. It seems plausible, though, that in the limiting case of 

* 

- 
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a random Stokes* flow, analogous to heat conduction in a solid medium, the 
velocity probability density is symmetrical, in which case k(r) would 
go to zero at t+ m. 

CONCLUDING REMARKS 

In roughly isotropic concomitant velocity and temperature fluctua- 
tion fields it has been found that: 

1. The temperature fluctuations die out more slowly than the turbu- 
lence (Pig. 29) in appromte sgreement with the predictions of refer- 
ence 4. 

2. The temperature double correlation coefficient function is rough- 
ly equal to the *'longitudinal" velocity correlation. 

3. The "mixed" triple correlation coefficient function entering the 
double temperature correlation equation is of the same order as the cor- 
responding velocity triple correlation. 

More explicit statement of detailed quantitative results covered 
herein will not be given here because these results may not have suPPi- 
cient universality. They may be significantly characteristic of the de- 
viations from isotropy in these velocity and temperature fields. 

The Johns Hopkins University, 
Baltimore, Md., June 12, 1957. 
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APF!l3NDIx - EEFEXTOFHOT-WIREWONLIRF,ARITY I 
ON TRIPLE CORRELATION B 

At "small" fluctuation levels, perhaps urfi < 10 percent, the 
Dryden-Kuethe linearized equation for hot-wire response (ref. 18) is 
satisfactory for measurements of a number of turbulence properties. For 
example, it is well known that turbulence lf?vel, double correlation, and 
power spectrum measurements sze not seriously distorted in the (< 3- , 
percent level) isotropic turbulence rather Par behind a grid. However, i 
previous research (ref. 13) makes no mention of this possible source of ? 

error in triple correlation measurements. It is evident that this re- 
placement of the response curve by its local tsngent will lead to poorer 
approximations for functions which depend more heavily on the tails of 
the probability density of u(t). Furthermore, awsy from response curve --- 
inflection points it seems evident that odd moments will tend to fare 
worse under linear approximation than will even ones. 

The simplest case of concern here is the skewness of u, 
s, z 7/ (iq3i2. A first-order estimate of the error in this measure- 
men-t is obtained by keeping the parabolic terms in the perturbation form 
of King's equation for hot-wire sensitivity. A suitable approximate 
form of King's equation is 

* 

-< 
.- 

ISa 
R -Ra=A- i2+B& (Au 

where 

A,B constants 

i wire current, taken constant here 

R wire resistance 

Ra wire resistance at ambient fluid temperature, taken constant here 

u instantaneous velocity normal to wire 

Writing U = ?+u and R =Eii-t-r where <=rzO sndexpandingthe 
square root out to u2 give 

R= 

(A21 
. 
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Averaging equation (A2) and subtracting the average from (A2) 
result in 

Prom which could be computed the measured skewness, 

as a function of the true skewness S, and of other flow and wire prop- 
erties. For simplicity, the analysis is restricted to 
lence, in which case Su = 0. The relation T;;i/(7)2 = 

isotropic turbu- 
-3 is taken as 

the Gaussian value, and the final estimate is 

For a typical O.l-mil platinum wire at an overheat temperature of 50° C 
in 2-percent turbulence level flow, this estimate gives 

even though S, = 0. 

The seriousness of this effect csn be gauged by observing that 0.05 
is the order of the maximum value of the triple correlation coefficient 
k(r). 

Before proceeding to an estimate of the effect on triple correla- 
tion measurement, the determination of skewness of velocity derivative 
is considered: 

SC’- F ( 

r”- ( )I &232 
zi 
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Following a rzocedure 

where 

similar to that for Se, an estimate 

in isotropic turbulence: 

+ C + 

is obtained 
t 

A- i2+Ba 

For the typical hot-wire operation cited previously, equation (A5) gives 
_... 

% = -s& - 0.005) 

which indicates a negligible effect. The quadruple correlation is esti- 
mated from the data of reference 17. 

--. 

In a completely formal measurement of triple correlation coefficient 
(using mean cubes of sum and difference voltage) an additive error can be 
expected of the order of that in Se, which is appreciable. However, for 
isotropic turbulence the triple correlation is just proportion&L to the - - 
skewness of the velocity difference (see section on experimental proce- 
dure), and it is not difficult to show that in velocity difference skew- 
ness measurement the error due to nonlinearity is small. In a sense, the 
effects of the two wires tend to cancel. Hence, it is convenient for 
reasons of both speed and reduction of error to follow Townsend in assum- - 
ing isotropy and thereby using the ldesl relation 

2 3/2 (y - ‘-LJ)~ = -6~f1.12 = i6(U ) k(r) 

Writing the two wire responses in series form gives 

m 
el = c “y”: i=o 

where ai and a J are proportionality constants. Terminated with the . 
u2 terms, equations (A8) become equation (A3), from which an estima% of 

l 

. 
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the first-order error comuitted by assuming that any dimensionless sta- 
tistical function of elre2 is equal to the corresponding function of 

. In particular, the difference skewness factors 

zi: e213/Fel - e2)j3'2 and (ul - u2j3/[(ul - u2)2]3'2 turn out 
to be related by 

2 
422 
"1 - u1u2 _ 

u2 (Ill - u2)2 

7 

3 
( 1 

4 
5 c2+c+* ul - +2 + 

I 
c2 (ul - u2)2 

7 
higher order terms 

I 

(A7) 

For the example used earlier equation (A7) gives an error of less 
thm 0.2 percent for r >$ A and rises to perhaps 2 percent at r + 0. 
Hence, this effect is negligible within the accuracy of these 
measurements. 

In the cubed-difference approximation to triple correlation, the 
same approach leads to 

;(-$3J;-+& 
1 

l-3(C2+C+$ $ 

)I 
w 

after the ass~tion of 2 (u ) I T2=, . This corresponds to percent errors 
about 10 times those in She, but these errors are appreciable only as 

r *O where (5 - e2)3/q@ is also going rapidly to zero; thus, 

no difficulty arises. 
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Figure 26. - He-e8 values Of g(r). x/M = 17-o. 

, 



NAGA TN 4288 63 

.06 
Y 

.04 

-k(r) 

.02 

0 
0 2 4 6 8 IO 

1 
if 

(a) Data of reference 12. x/M= 60.0. 

.06 

.04 

-k(r) 

.02 

0 
0 2 4 6 6 IO I 

(b) Present data. x/M = 32.0. 

Figure 27. - Comparison of measured values of triple correlation with 
values predicted from equation (14). 
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Figure 29. - Relative decay rates of temperature and velocity fluctuations. 
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FY.gue 31. - Damonstratlon of the approach to similarity of temperature and velocity flelda at large 
values of x/M. 


